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PERFORMANCE OF THREE QRS DETECTION ALGORITHMS
DURING SLEEP: A COMPARATIVE STUDY
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'Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki,
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Abstract — A comparison of the performance of three QRS
detectors used in the analysis of electrocardiogram (ECG)
during sleep is presented in this paper. Two widely used QRS
detection algorithms based on digital filtering (DF) are
compared with a newly introduced one, based on Higher-Order
Statistics (HOS). The percentage of QRS complexes failed
detection along with the number of false positives and false
negatives are measured for quantitative performance
evaluation. Experimental results, when applying the proposed
methods to nocturnal ECG recordings from the Sleep
Laboratory of the Philipps University of Marburg, Germany,
prove that the HOS-based QRS detector exhibits higher overall
ORS detection accuracy (99.95%) than the two DF-based ones
(99.75% and 99.59%, respectively). Moreover, it has lower noise
susceptibility despite the presence of different noise types, such
as smooth or abrupt baseline drift, SOHz powerline interference,
electromyographic intervention or any arrhythmia effect due to
sleep apnea.

Keywords — ECG, QRS complex, digital filtering, higher-order
statistics, sleep apnea, adaptive robust detector, comparative
study.

I. INTRODUCTION

UTOMATED analysis of electrocardiogram (ECG)

requires the accurate detection of QRS complexes
despite any noise presence. Most of the existing ECG
analysis algorithms are focused on the identification of the R-
wave in the QRS complex, once it is accurately identified, it
provides a reliable basis for the identification of the whole
ORS complex. Physiological variability of QRS complexes,
time-varying morphology of ECG, along with noise
contamination from various noise sources increase the
difficulty of the QRS complex identification task. Noise
sources include power-line interface, muscle contraction
noise, poor eclectrode contact, patient movement, baseline
wandering due to respiration, and 7 waves with high-
frequency characteristics similar to QRS complexes [1].

Typical approaches for most QRS detectors implement
one or more of three different types of processing steps, i.e.,
linear digital filtering, nonlinear transformation, and decision
rule algorithms [2]. Linear processes include a bandpass
filter, a derivative, and a moving window integrator, while
amplitude squaring and adaptive thresholds usually account
for the nonlinear transformation and the decision rule
algorithm, respectively.

The adaptation flexibility of the QRS detectors to
accurately account for the inherent time-varying morphology
of the ORS complex is of great importance. In the present
study, the performance of three QRS detection schemes is
quantified and compared on the basis of their adaptation
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ability. The two of them are structured on a digital filtering
(DF) origin, namely DF1 [3], [1], and DF2 [4], and are
widely used in the clinical practice. The third one, newly
introduced, is based on higher-order statistics (HOS), namely
HOS R-wave detector (HOS-RWD) [5]. The property of
HOS to be zero for Gaussian signals and exhibit high values
for transient non-Gaussian ones provides adaptive thresholds
structured on the variation of skewness and kurtosis
parameters when the QRS complex is present. Thus, the
necessary information regarding the location of R-wave is
extracted resulting in accurate estimates of the QRS complex.

Tests of the three algorithms on nocturnal ECG
recordings from the Sleep Laboratory of the Philipps
University of Marburg, Germany, provide a means of
comparing the performance of one algorithm to another and
evaluating their utility in a clinical environment.

II. OVERVIEW OF THE THREE ALGORITHMS

A. Digital Filtering-based Algorithm #1 (DF1)

This algorithm was initially introduced by Engelese and
Zeelenberg [3] and later adapted by Friesen ef al. [1]. The
version used in the present study is the second one but
slightly modified for eliminating high frequencies, the 50 Hz
instead of the 62.5 Hz power-line interference, and further
becoming independent from the choice of the sampling
frequency of the ECG data.

The ECG signal X(k),k =1,...,N,where N is the

length of each processed ECG record, is passed through a
differentiator with a 50 Hz notch filter,

YO(k) = X (k) — X (k — int( ? ), int( gf :

where, int(-) denotes the integer part of a ratio and f| , the

Y<k <N,(1)

sampling frequency.

The differentiated, filtered data is then passed through a
digital band-pass filter (FIR, 0-1 Hz stopband, 6-25 Hz
passband, 35-100 Hz stopband),

p
Y1(k) =Y w,YO(k - i),
i=0
where, p-1 is the order of the filter and w; is the coefficient.
Two equal in magnitude but opposite in polarity thresholds
are applied in the output of the bandpass filter [1]. The latter
is scanned until a point with amplitude greater than the
positive threshold is reached, indicating the onset of a 160 ms
search region.

The number of alternate threshold crossing is used to
classify the initial crossing as either a base-line shift, a QRS
candidate, or as noise. If no other threshold crossing occurs
within that search region, the occurrence is classified as a
baseline shift. Otherwise, three-decision conditions are tested
[1], and if anyone of them applies, the occurrence is classified
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as a QRS candidate. If additional threshold crossings occur,
the occurrence is classified as noise.

B. Digital Filtering-based Algorithm #2 (DF2)

This algorithm was introduced by Pan and Tompkins [4]
and it is realized through a sequence of processing steps that
include two digital filters, amplitude squaring, moving-
window integrator, and thresholds adaptation. The algorithm
had been modified for the initial steps.

At first a bandpass is used, as described by (2). Then a
five-point derivative was used,

YO(k) = #(2)((1( C4 4 X(k-3) = X(k—1)=2X(8). ()

After differentiation, the resulted signal Y (k)is squared
point by point

Yi(k) =Y (0], 4)

creating a nonlinear amplification of the output of the
derivative emphasizing the higher frequencies. Then a
moving-window integration is calculated over 150 msec.

Y2(k) = (1/ M)[Y1(k — (M 1))+ Y1(k — (M —2)) +
+ 4 Y1(K)), (5)

where, M is the width of the moving window (M=30
samples [4] for 200 Hz sampling rate).

Finally, an adjusting procedure that automatically sets
thresholds to float over the noise and successfully
discriminates QRS complexes from noise or T-waves takes
place [4].

C. HOS-based Algorithm (HOS-RWD)

Panoulas, Hadjileontiadis and Panas [5] introduced this
algorithm, which is based on the advantageous properties of

HOS over Gaussian noise. When the X (k) signal includes

transients with high amplitude its distribution shifts to a non-
Gaussian one. Consequently, the two HOS parameters, i.c.,

skewness, ]/; , and kurtosis, 7/2 , given by

ys = E{X°(k)},
i =E{X ()} -3EX* (0,

(6)
(7

exhibit high values, since they express the symmetry and the
heaviness of the tail of the distribution, respectively [6]. In
this way, skewness and kurtosis could be used as indices of
the presence or not of a transient in the X (k) signal.

Initially, a signal conditioning process takes place where
amplitude normalization and DC extraction, using a high pass
filter (5™-order Butterworth, cut-off frequency=3Hz) of the

N-sampled ECG signal X (k) are performed. Then, the
length L (<<N) of a sliding window along with the R-wave
length, D, are set in accordance to the sampling frequency, f;,
as the integer part of L=f/3 and D=0.02- f;, respectively. In
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addition, initial values of the thresholds used for the HOS
parameters are also selected. Next, X (k) is windowed with
a 99% overlap-sliding window of L samples. At each
window, J,and J,are estimated using normalized versions

of (6) and (7), respectively, and their values are located at the
end of the window. Then, the local maxima of the first

derivative of Jyand 7, are calculated indicating the
locations of possible R-wave. Subsequently, the values of
};3 and 4 at the possible locations are compared with two

thresholds; in case they are smaller the window is shifted by
one sample. If their values exceed the thresholds, the two
locations are compared to each other and in case they differ
the location pointed out by kurtosis is preferred [5]. Then, the
thresholds are updated using the mean value of the last five

maximum values of s and J,, respectively. After the

estimation of the first R-wave, the window skips D samples
to the right and proceeds with the next one until the end of
the input data is reached.

IV. IMPLEMENTATION

The whole analysis was implemented on an IBM-PC
(Pentium I1I/800 MHz) using the programming language
Matlab 6.0 (The Mathworks, Inc., Natick, MA). The DFI,
DF2 and HOS-RWD were applied on nocturnal ECG
recordings from 4 subjects (3 normal and 1 with severe sleep
apnea and cyclical variation of heart rate). The recordings
took place at the Sleep Laboratory of the Philipps University
of Marburg, Germany with a mean duration of 8 hrs and 35
mins (Table I). All analyzed files were sampled with a
sampling frequency of £,=200 Hz at a 16-bit digitization
resolution. The values for the sliding window length and the
R-wave duration of the HOS-RWD were selected as L=67
and D=4 samples, respectively. The order p-1 of the FIR filter
described in (2) was equal to 15. The time offset for DF1 and
DF2 was 11 and 24 samples, respectively.

V. RESULTS AND DISCUSSION

Several examples of analysis results are shown in Figs. 1-
4. In all these figures the ‘O’-dashed, ‘*’-dashed-dotted and
‘0’-dotted vertical lines, called hereafter /oc-lines, mark the
locations of R-waves when identified by the DF1, DF2 and
HOS RWD algorithms, respectively.

Fig. 1 depicts a 2048-sample section from file ‘1(N)’
(Table I), which clearly notates a baseline wandering in ECG
recordings. From the comparison of the /oc-lines it is clear
that DF1and HOS-RWD overcomes the effect of the baseline
wandering and accurately find the true locations of all 9 R-
waves included in that section. On the other hand, DF2 is
quite affected by the baseline drift and misidentifies 2 from
the 9 R-waves.

Fig. 2 shows a 2048-sample section from file ‘2(N)’
(Table I) and illustrates a case of ECG with a deep S-wave in
the QRS complex. In this case there is always the risk of
misidentification of the true location of the R-wave due to the
sharp S-wave peak. By careful examination of the /oc-lines in
Fig. 2 it is clear that, for all 11 QRS complexes included in



Baseline wandering [Section from file #1(N)]
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Fig. 1. A 2048-sample ECG section from file ‘1(N)’ with baseline
wandering. The /Joc-lines indicate the estimates of R-wave locations
from DF1 (‘O’--), DF2 (“*’-.), and HOS-RWD (“0’--) algorithms,
respectively.

that section the R-wave locations identified by DF1 are
shifted to the right of the true R-wave peaks, coinciding with
the S-wave locations. This indicates a severe influence of the
presence of deep S-waves to the performance of DF1. The
performance of DF2 was less affected by the presence of
deep S-waves since 2 from 11 R-wave locations were not
correctly found. Regarding the HOS-RWD algorithm, despite
the presence of deep S-waves it correctly identified all 11 R-
wave locations.

Deep S-wave [Section from file #3(N)]
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Fig. 2. A 2048-sample ECG section from file ‘3(N)’ with deep S-wave. The
loc-lines indicate the estimates of R-wave locations from DF1 (‘O’--), DF2
(°*’-)), and HOS-RWD (*0’--) algorithms, respectively.

Fig. 3 shows a 2048-sample section from file ‘4(A)’
(Table I), where an arrhythmia episode is present (after the
3" ORS complex). When comparing the location of the loc-
lines it is clear that the DF1 and HOS-RWD overcome the
arrhythmia effect and accurately identify the true locations of
all 10 R-waves included in that section. On the other hand,
the performance of the DF2 algorithm is affected by the
presence of arrhythmia, since it starts misallocating the true
locations of R-waves when the R-R time interval varies due to
arrhythmia (especially after the 5™ QRS complex).
Furthermore, this figure also shows an R-wave that unlike
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Arrhythmia [Section from file #4(A)]
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Fig. 3. A 2048-sample ECG section from file ‘4(A)’ with an arrhythmia
effect. The loc-lines indicate the estimates of R-wave locations from
DF1 (‘O’--), DF2 (“*’-.), and HOS-RWD (“0’--) algorithms,
respectively.

DF1 and HOS-RWD failed detection by the DF2 algorithm
(1*" ORS complex).

Fig. 4 illustrates a noisy 2048-sample ECG recording,
taken from another part of file ‘4(A)’, where apart from the
existence of arrhythmia there is a high-frequency noise
contamination. The simultaneous presence of the
aforementioned factors deteriorates the performance of the
DF2 algorithm resulting in overestimation of the true number
of R-waves, producing false negative ones. Noise affects less
the performance of DF1 and leaves unaffected the one of
HOS RWD. The latter is due to the property of skewness and
kurtosis to become equal to zero for Gaussian distributed
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High-frequency noise with arrhythmia [Section from file #4(A)]
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Fig. 4. A 2048-sample ECG section from file ‘4(A)’ corrupted by high-
frequency noise and also including arrhythmia effects. The loc-lines
indicate the estimates of R-wave locations from DF1 (‘O’--), DF2 (‘*’-.),
and HOS-RWD (°0’--) algorithms, respectively.

random processes, such as additive Gaussian noise [5].

Apart from the qualitative evaluation of the results by
visual examination of Figs. 1-4, a quantitative analysis was
also performed. For the quantitative evaluation of the
efficiency of DF1, DF2 and HOS-RWD, the numbers of false
positive R-waves (FP), false negative (FN) and the number of
R-waves that failed detection (FD) were calculated separately
and overall for all analyzed ECG records. These evaluators
describe the ability of these three algorithms to find the
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PERFORMANCE OF THE DF1, DF2 AND HOS RWD ALGORITHMZQ?IEE;PPLIED ON ECGS RECORDED FROM FOUR SLEEPING SUBJECTS
ECG Record Total ‘FP ‘FN “FD FD FP FN FD FD FP FN FD FD
Records  Duration (No.of'B)  (B) (B) (B) (%) B) (B) B) (%) (B) B B (%)
(hrs:min)
DF1 DF2 HOS-RWD
1 °N) 7:39 24800 10 42 7 0.02 520 220 69 0.27 2 0 14 0.05
2 (N) 9:04 30905 27 488 251 0.81 319 510 51 0.16 21 582 17 0.05
3(N) 7:37 21652 1292 23 4 0.01 888 224 20 0.09 0 0 4 0.01
4 (*A) 8:19 31078 53 672 11 0.03 831 300 310 0.99 0 1 26 0.08
Totals 33:16 108435 1382 1225 273 0.25 2558 1254 450 0.41 23 583 61 0.05
“N: Normal, A: Apneic; B: Beats; FP: False Positive, FN: False Negative, FD: Failed Detection.
correct number of R-waves without producing any could be applied in clinical or ambulatory heart rate screening

overestimation (FN) or underestimation (FD) of their number,
at the correct position in the raw data without misallocating
them (FP).

Analytical results for the quantitative evaluators for each
case and overall are shown in Table I. These results indicate
that the HOS-RWD is the most efficient among the three
examined algorithms in accurately detecting the QRS
complexes, since it exhibits the lowest errors. In particular,
HOS RWD has the lowest overall FP (0.021%), FN (0.53%)
and FD (0.05%) values from the other two algorithms. The
DF1 algorithm is ranked second, since it exhibits less errors
than the DF2 algorithm overall, FP (1.27%), FN (1.13%), FD
(0.25%), and FP (2.36%), FN (1.15%), FD (0.41%),
respectively. Comparing the individual performances of the
three algorithms for each ECG record of Table I it can be
noticed that the DF1 algorithm has smaller FD values than
the ones of HOS-RWD in two cases [files ‘1(N) and ‘4(A)’],
but significantly higher FP and FN values. This indicates that
although DF1 missed fewer QRS complexes than the HOS-
RWD it overestimated their true number and in some cases it
misallocated them. Consequently, despite some small loses in
the identified QRS complexes, the HOS-RWD performs more
accurately than the DF1 in the individual cases analyzed. The
DF2 algorithm has smaller FD values than the ones of DF1
only in one case [file “2(N)’] but higher FP and FP values for
the same case. Furthermore, DF2 exhibits smaller FP and FN
values than the ones of DF1 only in cases ‘3(N)’ and ‘4(A)’,
respectively, but has higher FN, FP and FD values for the
same cases. Thus, DF1 performs quite better than the DF2
algorithm in the different cases examined.

From the above results, it can be seen that all three
algorithms successfully identified a large percentage of the
total number of QRS complexes, indicating that all of them
could adapt to the -characteristics of nocturnal ECG
recordings, especially those seen in sleep apnea, such as
cyclical heart rate variation. Thus, they all could be used in a
clinical practice. Nevertheless, from the three algorithms
examined, the HOS-RWD has the lowest overall performance
errors and the lowest susceptibility either in baseline
wandering and/or presence of deep S-waves and/or
arrhythmia effect and/or additive high-frequency noise.
Consequently, the HOS-RWD shows evidences of a very
promising QRS complex detector scheme that successfully

and give rise to more accurate analysis of heart rate
variability.

VI. CONCLUSION

Three QRS detection algorithms were compared and
evaluated through their performance on nocturnal ECG
recordings analysis. The two of them, DF1 and DF2, widely
used, are based on digital filtering, while the third one, HOS-
RWD, is based on higher-order statistics and it is newly
introduced. Quantitative and qualitative analysis of the results
obtained from the analysis of nocturnal ECGs recorded from
normal and apneic subjects show reliable and accurate
performance from all three QRS detectors. Nevertheless, the
HOS RWD performs better than the other two ones, since it
exhibits the lowest performance errors. Additionally, it is not
affected by noise contamination of the ECG data capturing
more accurately the spectral/temporal variations in QRS
morphology due to the properties of its employed HOS-based
parameters. Finally, the HOS-RWD algorithm overcomes
more efficiently than the DF1 and DF2 schemes the heart rate
disorders seen in nocturnal ECG recordings, especially during
apnea episodes.
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